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This paper deals with the overall properties of polycrystalline graphite, a material mainly composed of
voids and dense inhomogeneities embedded in a less dense matrix. First, we examine the overall average
elastic properties and conductivities of such a material. Second, we evaluate the void shape effects on the
overall Young’s modulus. Finally, we compare the results obtained from the analytical model with exper-
imental data from radiolytic oxidation of graphite.

� 2008 Published by Elsevier B.V.
1. Introduction

Because of its very good thermo–mechanical properties in a
large range of temperatures, graphite is used for many industrial
applications and particularly in the nuclear industry. Its manufac-
ture involves complex methods of mixing and baking at high
temperatures, resulting in a heterogeneous material made of coke
filler particles, a coal–tar pitch binder matrix and pores of various
sizes [1,2]. In the UK, advanced gas-cooled reactors (AGRs) use a
dense and near isotropic type of graphite as a moderator and as a
major structural component. During service, the microstructure of
graphite is subjected to neutronic irradiation and radiolytic oxida-
tion, leading to important microstructural changes. It is now well
established that these changes are related to the bulk mechanical
properties of the material [2,3]. These property changes and their
relationships to the microstructure have been since long the sub-
ject of many studies and considerable effort has been made on
the development of porosity due to radiolytic oxidation [4,5].
The aim of this paper is to use an analytical approach to under-
stand and to evaluate the microstructural changes due to increas-
ing pore volume fractions and their relationships with the overall
mechanical properties of heterogeneous graphite.

Eshelby’s paper [6] is a basic general theory of micromechan-
ics of an inhomogeneity problem. Several extended theories have
been proposed since Eshelby [7]. Among them, a mean field
method has been used widely for its simplicity. In the context
of the present study, a paper by Taya and Chou [8] is most signif-
icant, since the paper examined the overall elastic constants of a
composite having two types of inhomogeneities. However, as
shown later, the basic equations to derive the overall elastic con-
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stants in their study lack one critical point. Thus, this paper first
presents our understanding of micromechanics of a material hav-
ing two types of inhomogeneities. In the main development of
analysis, we will assume that the shape of an inhomogeneity is
ellipsoidal. Firstly, a spherical shape is assumed for two types of
the inhomogeneities in the actual calculations, since the inhomo-
geneities we encounter in the type of graphite considered are
nearly spherical or particulate. In addition, we will adopt the
method using the extra strain due to the inhomogeneities in or-
der to calculate the overall elastic constants. This strain method
is different from that originally given by Eshelby, but can be more
easily accommodated into the final expressions of the overall
constants. However, we will show that the two methods are
equivalent. Next, the overall thermo–mechanical properties of
the same material are evaluated using the same principle and
the influence of the stiffness of the particles and the shape of
the pores on the elastic properties is shown. Finally, the numeri-
cal calculations of the overall Young’s modulus for increasing
pore volume fractions are compared with radiolytic experimental
data from the literature.
2. Analysis

2.1. Elastic body consisting of three isotropic phases

Eshelby demonstrated that the disturbance of the stress field,
created by the presence of one inhomogeneity in an infinitely ex-
tended and elastic matrix, can be reproduced by an equivalent
inclusion. The equivalent inclusion must possess the same shape
as the inhomogeneity it represents, and the same properties as
the surrounding matrix in which it is embedded. The local
‘stress-free’ strain within the inclusion is here referred to eigen-
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strain and denoted e�. Eshelby also demonstrated that the
eigenstrain within an ellipsoidal inclusion is uniform. The local dis-
turbance of the strain field due to the presence of an inhomogene-
ity is reproduced in Eshelby’s equivalent inclusion problem. The
strain inside the inclusion e is related to the eigenstrain by

e ¼ Se� ð1Þ

where S is the Eshelby shape tensor, depending solely on the geom-
etry of the inclusion.

If we consider an elastic and infinite body, composed of an
isotropic matrix (M), and of two different types of inhomogene-
ities, (X1) and (X2), which are perfectly embedded in it, we can
express the equivalent eigenstrains of each X-phase by consid-
ering separately one representative inhomogeneity of each type.
The volume fractions of the two domains X1 and X2 are respec-
tively denoted f1 and f2, and f is the sum of these two quantities.
The composite domain is subjected to an external force at infin-
ity that generates a uniform stress r0. The resulting external
strain due to this force is denoted c0 when the body is elastically
uniform. To consider the average stress and strain fields, we as-
sume a large number of inhomogeneities is embedded in the
matrix. These inhomogeneities do not necessarily have the same
size, but they have the same shape and the same properties. The
stress ‘felt’ by one inclusion of either one phase or another is
equal to the average stress hriM within the matrix [9]. Each inho-
mogeneity is subjected to three strain contributions: the strain
disturbance e created by its own presence; to the external strain
c0 due to the prescribed force; and to the strain disturbance
C�1hri due to the surrounding inhomogeneities. Considering
(1), the total stress within one representative inhomogeneity
and within the equivalent inclusion is related to the elastic
strain through Hooke’s law by

r0 þ r ¼ C�ðc0 þ C�1hriM þ Se�Þ ¼ C ðc0 þ C�1hriM þ Se� � e�Þ; ð2Þ

where C and C* respectively represent the stiffness of the matrix
and of one type of inhomogeneity. The unknown is the average
stress within the matrix phase hriM . A self-consistent scheme
can be used to express the eigenstrain [7]. However, results
must be considered with great care as it was shown by Budian-
sky [10] that this method could lead to unrealistic results in
some particular cases. The residual stress r1 within an inclusion
is uniform [6] since the eigenstrain of the inclusion is also uni-
form and its expression is obtained from the one-inclusion prob-
lem by noting

r1 ¼ CðSe� � e�Þ: ð3Þ

In the case of a body composed of many inhomogeneities, the
total stress within one equivalent inclusion is composed of
the residual stress, which is due to its inherent eigenstrain, and
the ‘back-stress’ generated by the presence of other inclusions
[9]. Since the residual stress within an ellipsoidal inclusion is uni-
form, we can express the average stress within one inclusion of
either one phase or another (X1 \X2) by

hriX1\X2
¼ r1 þ hriM : ð4Þ

Since the composite body is in stress equilibrium, the average
stress within the matrix and within the inclusions are related by
the average stress balance equation that is given by

f hriX1\X2
þ ð1� f ÞhriM ¼ 0 ð5Þ

The average stress balance equation and the expression of the
residual stress within one inclusion (Eq. (2)) lead to the expres-
sion of the average stress in the matrix in terms of eigenstrain
written as

hriM ¼ �f CðSe� � e�Þ: ð6Þ
This is a fundamental equation to be used, which Taya and Chou
[8] did not specifically give. Finally, the equivalency condition is gi-
ven by

C�ðc0 � f ðSe� � e�Þ þ Se�Þ ¼ Cðc0 � f ðSe� � e�Þ þ Se� � e�Þ: ð7Þ

This method can be extended to the case where the matrix
phase contains two different types of inhomogeneity, each type
having different shapes and different properties. In the case of
graphite, these can be considered the porosity and the filler parti-
cles. The ‘back-stress’ felt by one inclusion in either one phase or
the other is expressed by

hriM ¼ �f1CðS1 � IÞe�1 � f2CðS2 � IÞe�2: ð8Þ

For one representative inhomogeneity of the phase X1, having
stiffness C�1, the equivalency condition is written as

C�1ðc0 � f1ðS1 � IÞe�1 � f2ðS2 � IÞe�2 þ S1e
�
1Þ

¼ Cðc0 � f1ðS1 � IÞe�1 � f2ðS2 � IÞe�2 þ ðS1 � IÞe�1Þ ð9Þ

Similarly, for one representative inhomogeneity of the phase
X2, having stiffness C�2, the equivalency condition is written as

C�2ðc0 � f1ðS1 � IÞe�1 � f2ðS2 � IÞe�2 þ S2e
�
2Þ

¼ Cðc0 � f1ðS1 � IÞe�1 � f2ðS2 � IÞe�2 þ ðS2 � IÞe�2Þ: ð10Þ

Expressions for the eigenstrain in the equivalent inclusion of
each phase are obtained by solving Eqs. (9) and (10), giving

e�1 ¼ ðA1A4 � A2A3Þ�1½A4ðC� C�1Þ � A2ðC� C�2Þ�c0

e�2 ¼ ðA1A4 � A2A3Þ�1½A1ðC� C�2Þ � A3ðC� C�1Þ�c0
;

(
ð11Þ

where the matrix coefficients A1;A2;A3 and A4 are given by

A1 ¼ ð1� f1ÞðC�1 � CÞðS1 � IÞ þ C�1
A2 ¼ f2ðC� C�1ÞðS2 � IÞ
A3 ¼ f1ðC� C�2ÞðS1 � IÞ
A4 ¼ ð1� f2ÞðC�2 � CÞðS2 � IÞ þ C�2

8>>><
>>>:

ð12Þ

In the case in which the volume fraction of either one phase or
the other is zero, the result is identical to the one-type of inhomo-
geneity problem.

2.2. Equivalency between the energy and the direct strain balance
approach

The stress and strain disturbances by an inhomogeneity accom-
pany changes in elastic energy and potential energy of the system
on application of a prescribed loading. Originally, Eshelby devel-
oped this method to calculate these energy changes. When a dis-
turbance is reproduced by an equivalent inclusion with
equivalent eigenstrain e�, the increase in elastic energy is given as

DE ¼ 1
2

Z
V
r0

ije
�
ijdV ; ð13Þ

where V includes all the domains of inhomogeneities. This gives the
increase in elastic energy of

DE ¼ f
2
r0

ije
�
ij; ð14Þ

per unit volume of the body. Thus, the total elastic energy per unit
volume is

E ¼ E0 þ DE ¼ 1
2
r0

ijc
0
ij þ

f
2
r0

ije
�
ij; ð15Þ

where

E0 ¼ 1
2
r0

ijc
0
ij ð16Þ
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is the elastic energy per unit volume before the disturbance. E is de-
fined as

E ¼ 1
2
r0

ijcij: ð17Þ

Summarizing, we have

1
2
r0

ijcij ¼
1
2
r0

ijc
0
ij þ

f
2
r0

ije
�
ij: ð18Þ

Next, using cij ¼ C�1
ijkl r0

kl, c0
ij ¼ C�1

ijkl r0
kl and rewriting e�ij in terms of

r0
kl by using the equivalency condition, we can rewrite this equa-

tion as a quadratic form of r0
ij. The proportional factor of each term

contains C; C; C� and S. Comparing the factor of each term, we can
obtain the components of C, which is the stiffness of the material
containing the two populations of inhomogeneities.

2.3. Application to the overall thermo–mechanical properties

2.3.1. Overall stiffness
The overall stiffness C of a composite material which is consti-

tuted of three different elastic phases can be obtained using either
an energy approach or a direct strain approach. These two ap-
proaches are identical as one is derived from the other and results
are thus equivalent, as shown later. In this work, the expression of
the overall stiffness was obtained from a direct strain approach.
Since each phase is assumed elastic, Hooke’s law can be applied
to the overall composite material. The strain balance equation is
thus written as

C�1r0 ¼ C�1
r0 þ f1e

�
1 þ f2e

�
2 ð19Þ

Replacing the eigenstrains e�1 and e�2 by their expressions given
by (11), the overall stiffness C is obtained with

C�1 ¼ C�1 þ f1ðA1A4 � A2A3Þ�1½A4ðC� C�1Þ � A2ðC� C�2Þ�C
�1

þ f2ðA1A4 � A2A3Þ�1½A1ðC� C�2Þ � A3ðC� C�1Þ�C
�1 ð20Þ
2.3.2. Overall thermal conductivity
The local heat flux of a conductive material at any point is ob-

tained by Fourier’s equation written as

q ¼ �KirT; ð21Þ

where Ki is the thermal conductivity of the ith constitutive phase,
andrT is the gradient of temperature within the region considered.
Fig. 1. Evolution of the overall Young’s modulus against the
By analogy with the elasticity problem, the overall thermal con-
ductivity K is determined by

K�1 ¼ K�1 þ f1ðA01A04 � A02A03Þ
�1½A04ðK� K�1Þ � A02ðK� K�2Þ�K

�1

þ f2ðA01A04 � A02A03Þ
�1½A01ðK� K�2Þ � A03ðK� K�1Þ�K

�1 ð22Þ

where K is the thermal conductivity of the matrix and A01; A02A03 and
A04 are given by

A01 ¼ ð1� f1ÞðK�1 � KÞðS1 � IÞ þ K�1

A02 ¼ f2ðK� K�1ÞðS2 � IÞ

A03 ¼ f1ðK� K�2ÞðS1 � IÞ

A04 ¼ ð1� f2Þ ðK�2 � KÞðS2 � IÞ þ K�2

8>>>>><
>>>>>:

ð23Þ

The overall thermal conductivity K is given by Eq. (22), which
has the same form as Eq. (20) that gives the expression of the over-
all elastic matrix C. Using the elasticity-heat transfer analogy, the
study of the Young’s modulus can then be similarly repeated for
the study of the thermal conductivity.

3. Results and discussion

3.1. Influence of voids and filler particles

Considering a three-phase composite material which is com-
posed of an elastic matrix, voids and elastic filler particles, the
overall Young’s modulus of this material can be calculated for dif-
ferent void volume fractions and for filler particles having different
elastic properties by using the analytical approach developed
above. The Young’s modulus of the matrix phase (cf. filler particles)
is denoted E (cf. E1). Filler particles having the following elastic
properties were considered: E1=E ¼ 10, E1=E ¼ 5, E1=E ¼ 1, and
E1=E ¼ 1=10. Fig. 1 shows the overall Young’s modulus normalised
against by the one of the matrix for void volume fractions between
0 cm3=cm3 and 0:4 cm3=cm3.

In Fig. 1, it can be seen that the overall Young’s modulus de-
creases faster with increasing void volume fractions with stiff filler
particles. This approach gives similar results as the one proposed
by Taya and Chou [8]. However, our approach is more accurately
developed since the average stress in the matrix phase is expressed
in terms of residual stresses within one inclusion, and the expres-
sion of the overall elastic stiffness is given with a clearer and easily
computable form.
void volume fraction for different particle stiffnesses.
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3.2. Influence of the mean void shape

In this study, the influence of the shape of the voids is analysed.
Filler particles are assumed spherical, and have a Young’s modulus
E1 ¼ 2 E. The volume fraction of filler particles in polycrystalline
graphite was estimated to f1 ¼ 0:6 cm3=cm3 using X-ray tomogra-
phy images. Three different kinds of void aspect ratios can be
considered:

– Longitudinal voids, elongated in the direction of the pre-
scribed stress (a/c < 1).

– Spheres (a/c = 1).
– Transverse voids, elongated in the transverse direction to the

prescribed stress (a/c > 1).

For increasing void volume fractions, the effect of different void
shape on the overall Young’s modulus normalised against the over-
all Young’s modulus at zero void volume fraction is shown in Fig. 2.

In Fig. 2, the void aspect ratio is defined by the ratio between
the transverse radius a and the longitudinal radius c. The overall
Young’s modulus of a material containing longitudinal voids de-
Fig. 2. Effects of the shape of voids on the overall Young’s modulus norm

Fig. 3. Analytical results compared with r
creases linearly with increasing void volume fractions, with such
voids having little effect on the average stress within the matrix.
Spheroidal voids have a larger effect on the overall Young’s modu-
lus, but the largest effect is due to those elongated in the transverse
direction to the applied stress. In this case, increasing void volume
fractions reduce the overall Young’s modulus rapidly at low vol-
ume fractions and slower at high void volume fractions.

3.3. Comparison with graphite behaviour

Since polycrystalline graphite is mainly composed of �20% of
voids and coke filler particles which are embedded in a binder ma-
trix [2], the overall Young’s modulus of graphite containing
increasing void volume fractions f2 can be calculated using the ap-
proach developed above. The input parameters to define in the
analytical model are:

– The volume fractions and aspect ratio of the voids and of the
filler particles.

– The elastic properties of the filler particles and the
matrix.
alised by the overall Young’s modulus at zero void volume fraction.

adiolytic oxidation experiments [12].
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In quasi-isotropic graphite, coke filler particles are nearly spher-
ical, their volume fraction was estimated to f1 ¼ 0:6 cm3=cm3 using
X-ray tomography images, and assumed constant. The elastic prop-
erties of the matrix were previously estimated from nano-indenta-
tion [11], i.e. E ¼ 15 GPa. The Young’s modulus of the coke filler
particles was calculated so that the initial point at zero-void vol-
ume fraction coincides with the extrapolating curve plotted from
radiolytic oxidation data from the literature [12]. The Young’s
modulus of the coke filler particles was estimated to E1 ¼ 41 GPa.
Fig. 3 compares the results obtained using the three-phase analyt-
ical model considering spherical and transverse voids, and those
obtained from radiolytic experiments [12].

In Fig. 3, the dashed line represents the experimental data
extrapolated to zero-void volume fraction. As seen in Section 3.2.,
the decrease of the overall Young’s modulus is more rapid at low
void volume fractions when the mean void aspect ratio a/c > 1. In
this case, a good agreement between the numerical results and
the experimental curve was obtained for a=c ¼ 4:0 .

4. Conclusion

The present paper showed the application of Eshelby’s theory
and the mean-field method to the prediction of the overall ther-
mo–mechanical properties of a three-phase composite material.
It was also demonstrated that the energy approach gives equiva-
lent results to a direct strain approach. The effect of the elastic
properties of the filler particles and increasing void volume frac-
tion on the overall Young’s modulus were analysed using this ap-
proach. Finally, the analytical calculations of the overall Young’s
modulus with increasing void volume fractions of isotropic poly-
crystalline graphite were compared to experimental data from
radiolytic oxidation in the literature. A good agreement was found
for a mean void aspect ratio a=c ¼ 4:0. In a future paper, the pres-
ent authors will also extend this theory to the prediction of the
overall tensile strength of a composite material, the presence of
n families of inhomogeneities, and to the case of a material con-
taining non-ellipsoidal inhomogeneities.
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